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Abstract

Land subsidence is an important topic in The Netherlands, due to its situation below sea level and
the resulting large-scale waterworks this requires. Except for natural causes, like post-glacial
rebound and compaction of the soft peat soil, man-made causes for land subsidence, like the
extraction of ground water, oil, gas and salt, have to be monitored with great care. However, the
determination of land subsidence with magnitudes of less than one centimeter per year requires
high-accuracy measurement and modelling methods, and scrupulous data processing.
Therefore, the monitoring of land subsidence is based on an extensive adjustment and testing
procedure of the levelling data. The optimal deformation model, e.g. a kinematic model per
benchmark or a spatial-temporal model for a subsidence bowl, is determined by testing the actual
solution (null hypothesis) against several alternative hypotheses, resulting in adaptation of the
data and/or the functional or stochastic model in case of rejection. The paper discusses this testing
procedure and various alternative hypotheses like datasnooping, identification tests, tests for
deviant behavior of individual benchmarks and epoch tests. The most likely alternative hypothesis
indicates an adaptation of the model or data, resulting in an improved solution acting as new null
hypothesis. The testing procedure is demonstrated on a multi-epoch data set.

1.  Introduction: land subsidence modelling

A typical example of land subsidence in the Netherlands consists of a smooth subsidence bowl of
up to several kilometers in diameter, with a subsidence velocity of millimeters up to a few
centimeters per year. In the western part of the country compaction and oxidation of the peat soil
are natural causes of land subsidence, often induced or intensified by a lowering of the (very high)
ground water level. Direct manmade causes for land subsidence are the extraction of water, salt,
oil and gas. Especially in the northeast, the exploitation of the large Groningen gas field and its
adjacent smaller fields result in smooth subsidence bowls with a typical velocity of one centimeter
per year. Although maximum subsidence is only a few decimeters, subsiding areas are usually
very well monitored. One of the main reasons is that the subsidence should be accompanied by
careful water management to avoid the ground water level becoming too high for agricultural
activities.
To monitor this low magnitude land subsidence, precise spirit levelling of benchmarks is still the
primary measurement method. Other methods have been investigated, like GPS height
determination (see e.g. DE HEUS ET AL. 1999) and interferometric SAR. Their accuracy under
practical circumstances is however not yet high enough to replace spirit levelling.  Therefore,
throughout this paper precise spirit levelling measurements will be considered the main data
source for monitoring and modelling of land subsidence. However, many principles of the
presented testing procedure can also be applied to other observation types.

The general model for subsidence modelling based on benchmark heights reads

H H zi t i t i t t, , ,= + −0 0
, (1)

with tiH , the height of benchmark i at time t, Hi t, 0
its height at reference time t0, and zi t t, − 0

the
subsidence since t0, according to some specified subsidence model. If data is available from
before subsidence occurred, the reference time t0 can be adopted or estimated as the beginning of



A TESTING PROCEDURE FOR SUBSIDENCE ANALYSIS

19 � 22 March 2001    Orange, California, USA PP-41

subsidence and Hi t, 0
as the initial benchmark height before subsidence. Otherwise a reference

time needs to be chosen, without any specific interpretation.
The specific subsidence model at hand is not relevant here since the presented testing procedure
can be applied generally. The subsidence model can e.g. be specified per benchmark, as a
kinematic function of the time lag since t0, ),( 0, 0

parttzz itti −=− . In VERHOEF AND DE HEUS 1995 a
polynomial is estimated per benchmark, if necessary including a discontinuity or breakpoint.
When the behavior of the benchmarks shows a regional coherence, then it might be possible to
estimate a spatial-temporal model for all benchmarks within a local area,

),,,( 0, 0
parttyxzz iitti −=− . For subsidence modelling above deep gas reservoirs, smooth 7-

parameter spatial-temporal subsidence bowls were successfully applied (HOUTENBOS 2000).

Subsidence modelling from benchmark heights is actually the last part of the data analysis. Since
the benchmark heights are no measurable quantities, they have been derived from e.g. levelling
networks at several epochs. The complete analysis procedure then consists of three parts (DE HEUS
ET AL. 1995): 1) Single epoch analysis of the levelling networks; 2) Stability analysis of the
levelling benchmarks and connection of the levelling networks to stable reference points (DE HEUS
ET AL. 1994); and 3) Estimation of a kinematic subsidence model per benchmark, or a spatial-
temporal model for a group of benchmarks. In each part, optimal analysis requires systematic
testing for outliers and of model deficiencies.
Recently, this stepwise analysis procedure was successfully replaced by an integrated analysis,
based on straightforward estimation of the subsidence model from the original levelling data
(KENSELAAR AND QUADVLIEG 2001). With (1) the observation equation for a levelled spatial height
difference hij,t, between benchmarks i and j at time t, can then be written as

,,,,,,

,,,,

0000 tijttjttitjti

tijtjtitij

ezzHH
eHHh

++−+−=

++−=

−−

(2)

where the stochastic noise term eij,t accounts for the measurement noise and possibly model
inaccuracies.
Usually, subsidence monitoring is based on levelling networks measured at discrete epochs.
Within an epoch all observations share the same time label. Observation equation (2) however
also allows for a strict kinematic analysis approach, where each levelling observation has its own
individual time label. The data is then not organized in epochs, but considered to compose one
multi-temporal kinematic network. An example of this approach is described in DE BRUIJNE ET AL.
2001.

In this paper we will assume the subsidence modelling to be based on a straightforward analysis
of the original levelling observations, like with (2). We will also assume the levelling data is
organized in epoch networks, where the mk levelling observations within each epoch k = 1�K
share the same time label tk and are gathered in a vector hk. Unknowns are the heights of nb
benchmarks under study and np parameters of the subsidence model. According to practice we
will allow that in an epoch network not all, but only nbk benchmarks have been measured. Based
on observation equations (2) the (linearized) model of observation equations can then be written
as
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with: hk vector of mk (linearized) levelled height differences in the levelling network at
 epoch  k;

Wk mk×nbk matrix relating the levelled height differences and benchmark heights at
epoch k (the levelling network matrix);

Pk nbk×nb permutation matrix, selecting the nbk benchmarks occupied at epoch k
from the complete set of nb benchmarks;

Zk nbk×np coefficient matrix of the (linearized) subsidence model;
H0 vector of nb (linearized) unknown benchmark heights at reference time t0;
par vector of np (linearized) unknown parameters of the subsidence model;
ek vector of mk unknown stochastic noise terms;

In (3) the number of observations is mkk
K

=∑ 1 and the number of unknowns is nb + np.

2.  Hypothesis testing

The subsidence analysis is based on determination of the optimal subsidence model fitting
through the levelling data, meanwhile identifying outliers in the data. The precise levelling
measurements and low magnitude subsidence require scrupulous data processing in order to
discriminate between significant subsidence, observation noise, outliers and model imperfections.
Therefore a combination of least-squares estimation and statistical hypothesis testing is advised.

In (3) the levelling data of all epochs available is written as a linear(ized) model of observation
equations,

y Ax e Qy= + ; , (4)

with y a vector of levelling observations, Ax the model of observation equations, with the
unknown vector x containing the benchmark heights as well as the parameters of the subsidence
model, e the vector of stochastic noise terms and Qy the variance-covariance matrix describing
their dispersion. Except for the quite well known levelling measurement precision, the variance-
covariance matrix could also account for the limited accuracy of the subsidence model to describe
the actual land subsidence (KENSELAAR AND QUADVLIEG 2001).
From (4), minimum variance unbiased estimates for both x and e can be obtained by least-squares
adjustment. In case the subsidence model consists of non-linear functions in the unknown
parameters, the model needs to be linearized and an iterative least-squares solution is required.
Statistical testing is based on the least-squares residuals and their variance-covariance matrix,
which can be computed as (see e.g. TEUNISSEN 2000A).

$ ; , ( )$e P y Q P Q P I A A Q A A QA e A y A
T

y
T

y= = = −⊥ ⊥ ⊥ − − −with 1 1 1 . (5)

In hypothesis testing, the actual model and data � called the null hypothesis (H0) � is tested
against one or more alternative hypotheses (HA), specifying a model adaptation or possible
error(s). The alternative hypothesis is specified as a linear extension of the null hypothesis with q
additional error components, q being the dimension of the test,

H versus H0 A: , :y Ax e y Ax C e= + = + ∇ + , (6)

where C∇ is a linear(ized) model extension with vector ∇ containing q unknown (suggested)
errors and C describing their influence on the observables.
One is likely to reject the null hypothesis, in favor of the alternative hypothesis, if the estimated
errors are significant. The general test-statistic for testing the null hypothesis against a specific
alternative hypothesis can be computed from the least-squares residuals (5) under the null
hypothesis (TEUNISSEN 2000B):
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Assuming the observables obey a Normal distribution, the test-statistic is Chi-squared distributed
with q degrees of freedom. Thus, the null hypothesis is rejected, in favor of the alternative
hypothesis, if T qq q

> χα
2 ( ) , with α  the level of significance.

For alternative hypotheses assuming only one error (q = 1), ∇ reduces to a scalar, C to a vector c,
and (7) can be simplified to

T
c Q e

c Q Q Q c

T
y

T
y e y

1

1 2

1 1
=

−

− −

( $)

$

. (8)

Before making any further inferences, a so called overall model test of the null hypothesis is
computed, as a general check whether the data fits the subsidence model within the tolerances as
specified in the stochastic model. This test quantity can easily be computed as the length of the
vector of least-squares residuals. The dimension of the test equals the redundancy (r) of the
model:

)(with)(~�� 1
21 npnbmrreQeT K

k ky
T

r +−== ∑ =
− χ . (9)

As long as the overall model test is rejected, identification of the most likely error is supported by
testing the null hypothesis against various alternative hypotheses.

3.  Alternative hypotheses for subsidence analysis

In this section we will specify some alternative hypotheses that can be useful in subsidence
analysis. All alternative hypotheses will be written as linear extensions of the null hypothesis (3),
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with ∇ a vector containing q suggested unknown errors or model adaptations and the mk×q
matrices Ck specifying their influence on the levelling observations of epoch k. The following
types of hypothesis tests correspond with specific choices of q and Ck.

Observation test
With this type of hypothesis we test for an individual error in the levelling data. If we suspect
levelling observation hij,k, all matrices C1�CK  in (10) reduce to zero vectors, except for Ck that
reduces to a vector

( )cij k
T

, = 0 0 1 0 1L L , (11)

with the 1 in the mk-vector cij,k  at the position corresponding with the suspected levelling
observation in epoch k. Systematic testing of all mkk

K
=∑ 1 observations is often referred to as

datasnooping.
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Identification test
In this type of alternative hypothesis a deviating behavior of a specific benchmark in only one
epoch is suggested. In case of benchmark i in epoch k, all matrices C1�CK  in (10) reduce to zero-
vectors, except for Ck that reduces to a vector

( )c W P c ci k k k i i
T

, ,= =with 0 0 1 0 1L L , (12)

with the 1 in the nb-vector ci at the position corresponding with benchmark i. Systematic testing
of all benchmarks in all epochs implies K times nb tests. However, if a benchmark is not
measured in epoch k, ci,k reduces to a zero-vector and no test-statistic can be computed. The
number of relevant tests reads nbkk

K
=∑ 1 .

Point test
This type of alternative hypothesis investigates whether a benchmark has a significant deviating
behavior throughout all epochs. For benchmark i, the matrices Ck, k = 1�K in (10) have
dimension mk×qi and can be written as

( )C W P ci k k k i, = 0 0 0 0L L , (13)

with ci as in (12) and the vector WkPkci as column number k = 1�qi of Ci,k. The dimension of the
test (qi) equals the redundancy of the benchmark, i.e. the number of epochs K minus the minimal
number of epochs needed to determine its height and any benchmark specific subsidence
parameters. Since WkPkci becomes a zero-vector for epochs where the benchmark is not measured,
the matrix could contain zero-columns, making computation of the test-statistic impossible.
Elimination of these zero-columns and their corresponding errors will reduce qi to its true value
and solve the problem.
The point test can be considered an overall test per benchmark since the dimension of the test
equals the benchmark redundancy, while no specific causes of the deviation are defined. In total
nb point test-statistics can be computed.
As an example, consider a subsidence model assuming an individual, constant velocity per
benchmark. Per benchmark then two unknowns need to be estimated (benchmark height and
velocity). If the benchmark is measured in all epochs, then qi = K−2 and the model extension of
the alternative hypothesis (10) reads
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Epoch test
This type of alternative hypothesis acts as an overall test per epoch. It indicates that a complete
epoch deviates from the model, without further specification. In case of epoch k, all matrices
C1�CK  in (10) are zero-matrices, except for Ck that equals the mk×nbk matrix

C Wk k= . (14)
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Considering each epoch, K epoch test-statistics can be computed. The large number of additional
errors estimated (q = mk) may cause rank deficiency problems. An epoch test can only be
computed if the subsidence model could also be determined from the data without the epoch
considered.

Depending on the subsidence model at hand various, types of alternative hypotheses can be
designed to test whether specific model extensions would yield a significant improvement. Two
examples:

Breakpoint test
In case the subsidence model consists of an individual temporal polynomial function per
benchmark, one could think of extension with one or more higher order terms, or inclusion of a
discontinuity in the benchmark behavior, called breakpoint in VERHOEF AND DE HEUS 1995. For
example, starting with a subsidence model assuming an individual, constant velocity per
benchmark, we can test the null hypothesis against an alternative hypothesis suggesting a
breakpoint at epoch time tb. For benchmark i, all matrices Ck  in (10) for tk ≤ tb  reduce to zero-
vectors, while for tk > tb matrices Ck reduce to vectors

c t t W P ci bk k b k k i, ( )= − , (15)

with ci as in (12). This alternative hypothesis still assumes a linear subsidence for this benchmark,
but with a different velocity before and after the breakpoint. Systematically, each of the nb
benchmarks can be tested for a breakpoint in each (but the first and last) epoch.

ALB test
Using a spatial-temporal subsidence model as null hypothesis, one could for instance test for a
specific deviation of a benchmark from the regional coherent model. For example, a subsidence
model assuming per benchmark a constant, but spatially varying velocity, can be tested for
benchmarks with velocities that differ significantly from the spatial model. In KENSELAAR AND
MARTENS 2000, this is introduced as so-called 'autonomous linear behavior' (ALB). Taking
benchmark i, all matrices Ck  in (10) reduce to vectors

c t t W P ci k k k k i, ( )1 1= − , (16)

with ci as in (12) and t1 the time label of the first epoch. The ALB is assumed to be independent of
an eventual beginning of the spatial-temporal subsidence model at t0. Systematically, each of the
nb benchmarks can be tested for ALB.

4.  Estimation and testing procedure

In geodetic positioning problems the model is usually known very precisely. The data processing
therefore focuses on blunder detection in the observations. The testing procedure can often be
limited to datasnooping (observation tests). For subsidence analysis however, the model has a
physical character and is only known up to an approximation of the true local behavior of the
earth�s surface. In data processing, blunder detection and the determination of the best fitting
model can not be fully discriminated. The testing procedure should therefore consist of several
types of alternative hypothesis, testing the data and both the functional and stochastic model.
Since most types of tests are sequentially computed for all observations, benchmarks or epochs,
the null hypothesis is opposed against a large number of alternatives.
Identification of the most likely alternative hypothesis is trivial as long as all tests have the same
number of degrees of freedom. The largest (rejected) test-statistic then points to the first candidate
for adaptation of the data or the model. For example, from the previous section all test-statistics of
the observation test, identification test, breakpoint test and ALB test follow a Chi-square
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distribution with one degree of freedom and share the same critical value χα
1

2 1( ) . However, the

point test, epoch test and overall model test have different degrees of freedom and different
distributions. Their test-statistics can not be compared straightforwardly. In DE HEUS ET AL. 1994 it
was therefore proposed to compare the quotients of test-statistic and critical value instead,

T qq
q

χα
2 ( ) , while fixing the power of all tests to 50%. A test-quotient larger than one is then

rejected and the largest test-quotient indicates the most likely alternative hypothesis amongst all
tests performed.

The testing procedure has to be completed stepwise, where in each step the data, the functional
model or the stochastic model is adapted, as indicated by the largest test-quotient. The improved
model is adjusted and tested again, until all tests are accepted. The estimation and testing
procedure can be summarized as follows:

1. (Iterative) least-squares adjustment of the null hypothesis subsidence model (3);
2. Computation of test-statistics for the overall model test (9) and numerous alternative

hypothesis using (7) and (8), e.g. a selection from the types of alternative hypotheses
(11) � (16);

3. Identification of the most likely alternative hypothesis by selection of the largest
rejected test-quotient (as long as the null hypothesis model is rejected);

4. Adaptation of the subsidence model following the suggestion of the most likely
alternative hypothesis, the improved model enters as new null hypothesis in step 1.

The first three steps can be automated completely. Automation of the fourth step is only possible
for simple adjustment problems, e.g. when only datasnooping is involved. For a complicated
problem like the determination of a subsidence model, possible improvements concern the data,
the functional model, as well as the stochastic model. This requires both experience and specialist
knowledge of the measurement process and the subsidence problem at hand. Therefore, the
analyst has to make an expert decision, although the identified most likely alternative hypothesis
gives valuable suggestions:

• The observation test suggests an error in a levelled height difference. When identified as most
likely alternative hypothesis, the observation can be excluded from the data set or reweighted
to diminish its influence, assuming the error source can not be reconstructed.

• The point test acts as an unspecified identifier for a benchmark deviating from the subsidence
model. Other benchmark related tests, like the identification, breakpoint or ALB test,
investigate specific types of deviations. When marked as most likely alternative hypothesis,
the benchmark can be excluded from the data set in all epochs. Graphical visualization of the
benchmark behavior throughout all epochs could suggest a more specific alternative
hypothesis.

• The identification test marks a benchmark to deviate from the model in one of the epochs.
When pointed as most likely alternative hypothesis, the benchmark can be omitted from the
data set in that epoch, by combining its related observations to new ones. In this way the
benchmark is excluded, still using all the levelling data. Further data screening could e.g.
reveal that in one of the epoch networks a wrong benchmark (number) was used.

• The breakpoint and ALB tests suggest that for a specific benchmark the subsidence model
should be extended with one or more parameters. When identified as most likely alternative
hypothesis, one should actually adapt the functional model and estimate a breakpoint or ALB
velocity for the benchmark concerned. Again, graphical visualization of the benchmark
behavior can support this decision.

• The epoch test acts as an unspecified identifier for an epoch that is significantly deviating
from the subsidence model. When the largest rejected test-quotient concerns an epoch test,
further investigation is necessary since usually one is not willing to exclude a complete epoch
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from the data set. Rejection of the epoch test could e.g. be caused by remaining systematic
errors in the levelling network, or the subsidence model assumed fails, specifically concerning
the temporal behavior. It could also be a reason for adaptation of the stochastic model, e.g.
increasing the measurement standard deviation for that epoch.

• In case the overall model test has the largest rejected test-quotient, the data and model just do
not match, without a specific alternative hypothesis indicating the problem. Further
investigation is necessary. For example, too optimistic assumptions have been made for the
stochastic model. A subsidence model that is only a rough approximation of the physical
reality can not be expected to fit the data within the narrow margins of levelling measurement
precision only.

5.  Real data example

In this section the presented testing procedure will be demonstrated on a relatively small and
convenient, multi-epoch data set. The data is gathered to monitor land subsidence above the so-
called Roswinkel gas field. This is a small, isolated gas field south of the large Groningen field.
Five epochs of levelling networks were measured in 1980, 1985, 1990, 1994 and 1997, the first
one before gas production in 1983 (see figure 1). Note that the epoch levelling networks have very
low redundancy. Thus, single epoch analysis of the network will yield little information about the
data quality. However, the effects of deep gas extraction on the benchmark heights can be well
approximated by a continuous spatial-temporal subsidence model as described in HOUTENBOS 2000,
KENSELAAR AND QUADVLIEG 2001. This model assumes a smooth subsidence bowl with ellipsoidal
contour lines, where each point has a constant subsidence velocity that is exponentially decreasing
with the distance to the center of the subsidence bowl. Except for the initial benchmark heights,
seven parameters can be estimated, determining the subsidence bowl:

t0 the time of beginning of subsidence;
s the linear subsidence velocity in the center of the subsidence bowl;
x0 and y0 the position of the center of the subsidence bowl;
a, b and ϕ the half long and short axes and the orientation of the subsidence ellipse.

The unknown benchmark heights and subsidence parameters are estimated straightforwardly from
the levelling data of all epochs.

Figure 1: The Roswinkel data set, from left to right the epoch networks of 1980, 1985, 1990, 1994 and
  1997, and the contours of the subsidence bowl.

Initially the stochastic model only accounted for the levelling measurement precision. For the
standard deviation of the levelling observations an a-priori value of 0.7 mm/√km was assumed for
all epoch networks. In the stepwise estimation and testing procedure the actual null hypothesis
was tested with an overall model test and the following alternative hypotheses: observation tests
(for each levelling observation); identification tests (for each benchmark in each epoch); point
tests (for each benchmark); ALB tests (for each benchmark); and epoch tests (for each epoch).
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Successive adaptations in the data or the model were undertaken, based on evaluating the
alternative hypothesis with the largest rejected test-quotient. In table 1 a summary is given of the
successive test results and model adaptations.

In the first four steps, the largest test-quotients concerned benchmarks that clearly deviated from
the subsidence model. In three cases the benchmark showed so-called autonomous linear behavior
(ALB), i.e. the benchmark velocity is still constant, but significantly deviating from its velocity
according to the subsidence model. The model was extended with an additional velocity
parameter for such a benchmark. As an example, the estimated velocity for benchmark 18A0090
is 1.3 mm/year lower than according to the subsidence model. One benchmark deviates from the
model in a more complex way and was eliminated from the data set. Isolated misbehaving
benchmarks are often ascribed to other causes than gas extraction, like local groundwater
lowering.

Step Alternative hypothesis with largest test-quotient
(value between brackets)

Model adaptation

1 ALB test benchmark 18A0090 (57.14) additional velocity parameter
2 ALB test benchmark 18A0006 (27.43) additional velocity parameter
3 Point test benchmark hp0650 (26.57) benchmark excluded
4 ALB test benchmark 18A0089 (10.97) additional velocity parameter
5 Epoch test network 1980 (5.78) point noise, σ = 0.6 mm/√year
6 Observ. test 18C0095 � 18C0152 in 1994 (1.67) observation excluded
7 Epoch test network 1980 (1.08) for epoch 1980 σ = 0.8 mm/√km
8 Largest test-quotient is 0.98 (overall model test) accept model

Table 1: Summary of successive test results and model adaptations.

In step 5 however, the epoch test for 1980 was pointed as most significant. Since the test-statistic
still exceeded the critical value with a factor 5.78, it was concluded that the subsidence model
would not fit the data within relaxation for levelling measurement precision only. The stochastic
model was extended by accounting for so-called point noise, allowing a stochastic variation of the
benchmark heights, with a standard deviation of 0.6 mm/√year (see KENSELAAR AND QUADVLIEG

2001).
Adding the additional point noise terms to the stochastic model significantly decreased the test-
quotients. Their maximum now pointed to an observation, that was excluded from the data. In step
7, epoch 1980 was again marked as problematic, with a test-quotient just over one. Slightly
increasing the measurement standard deviation to 0.8 mm/√km, for just this first epoch network,
resulted in an accepted model.

In this paper we concentrate on the testing procedure and not on the subsidence modelling itself. It
suffices to remark that the redundancy of the accepted model was 134 (225 observed height
differences, 81 unknown initial benchmark heights, 7 unknown parameters of the subsidence bowl
and 3 individual benchmark velocities). The estimated subsidence velocity in the center of the
subsidence bowl was 10.1 mm/year, with a standard deviation of 0.2 mm/year. The standard
deviation of the time of beginning of subsidence was 80 days and the standard deviations of the
position and size of the subsidence bowl were in the order of 50 meter. In this particular (quite
convenient) case the remaining discrepancies between the data and the smooth subsidence trend
model were within half a centimeter.

6.  Concluding remarks

The described estimation and testing procedure has been implemented in several software
packages. On various data sets the procedure has been proven a successful tool in processing
levelling data for subsidence analysis. The largest test-quotients supply valuable suggestions for
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adaptation of the data or extension of the model. The actual adaptation however requires expert
knowledge about the levelling data, the subsidence phenomenon, benchmark foundation and local
circumstances. Often, the adopted subsidence model is a too approximate assumption to fit the
very precise levelling observations. Extension of the stochastic model will then be necessary.
Since a stochastic description of these model inaccuracies is often hardly known, various choices
could lead to different results. Practically, one could complete the stepwise testing procedure
following different adaptation strategies, and investigate whether their resulting subsidence
models differ significantly. A more theoretical approach would be to combine the testing
procedure with estimation of the stochastic model, e.g. with variance component estimation
techniques.

This research was performed in close cooperation with the Geomatics Department of the
Nederlandse Aardolie Maatschappij (NAM), who also placed the Roswinkel data at our disposal.
Further research is sponsored by Delft University DIOC-funding.
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