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Abstract

The integrated model to be presented allows for the physical interpretation of measured
displacements including geodetic and mechanical relationships.
The general relationship between the variation principle of mechanics and the general
case of the least squares adjustment will be shown. Thus the geodetic calculation methods
can be applied favourably for the use of variation  objectives. Applying the Lagrange
function with multipliers leads to an extended model for the potential.

A complex deformation model based on the extended dynamical Hamilton’s principle
will be derived and recommended as an integrated solution procedure.

1. Introduction

The principles of virtual displacements or of the enforcement of stationarity for the total
potential energy has been used for the formulations of the physical relations in the area of
structure mechanics and solid body mechanics.
The solutions are achieved by applying Lagrangean functions. These functions represent
the most general case. For specific applications special models and solutions are known
which can all be derived from the general case.

The least square adjustment technology is the standard way to solve most problems for
geodetic applications.  It is of special interest to define and solve tasks in structural
mechanics by making best use of the solution strategy, the specific properties and
advantages of the least squares method. Therefore it seems necessary to describe the
mechanical model in a general formulation and find an extension of the method of least
squares to the most general case of correlated observables.
In the paper a specific way of solution is derived where two groups of Lagrangian factors
are applied. Due to this general formulation it becomes apparent that the method of least
squares and the application of the variation principle in mechanics lead to equivalent
formulation. In both approaches the way to find an extremum via applying Lagrange
factors.

Exploiting the analogy,  the physical meaning of  the parameters of the corresponding
least squares problem become apparent. This results in a better understanding of the
parameters, and the matrices of any least squares problem or mechanical variation
problem. Most elaborate techniques of the least squares strategies, accuracy and
reliability aspects can be applied to any variational application inf mechanics.
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2. Geodetic least squares solution

If there are additional boundary conditions in order to find a minimum applying the
method of least squares we use the Lagrangian function with Lagrangian factors. The
Lagrangian function for a condition adjustment of observations with additional conditions
between the unknowns reads, using observables l,misclosures w, residuals v and
parameters x:





 +−



 ++−=Φ −

111
2

1111
1

1

1

111
22

km

T

kmk

T

rmrmnrn

T

r

T

nnn
l

T

n
dxGkwxAvBkvQv (2.0)

By setting the first derivative to zero and rearranging we get:

  

022

022

21

1
1

=−−=
∂
Φ∂

=−=
∂
Φ∂ −

TT

TT
l

T

GkAk
x

BkQv
v

(2.1)

qonsequently:
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the residuals v  read:

   1BkQv l= (2.3)

Substituting v  in the condition equation and arranging the two condition equations
together with the second equation of 2.2 we get:
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In a squential elimination process the unknown parameters, Lagranian factors und the
residuals can be determined.

2.1  Lagrangian factors k

From the first equation of 2.4 we receive:
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substituted to the second equation of 2.4 results in:
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The first equation multiplied by 1
2
−NGT results in:
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By adding the second term results in:
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2.2 Unknown parameters

Substituting 2.9 in the first equation of 2.7 results in the formulation for x :
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Substituting x  from (2.10) to (2.5) results in 1k :
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2.3  Residuals:

In the same way the residuals of 2.3 result by substituting 1k  from 2.5:
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3. Mehanical solution

The variational method finds one of most fruitful fields of application in the small
displacement theory of elasticity. When the existence of a strain energy function is
assured and the external forces are assumed to be kept unchanged during displacement
variation, the principle of virtual work leads to the establishment of the principle of
minimum potential energy Π . If the displacements are calculated, the onother variables
like strain and stress values can be dyrectly obtained from the equations (3.5) and (3.10).
Approximate values for the displacements can be obtained by using the model given in
(Milev, Gruendig 1999).

According to (Bathe 1986) a finite element solution can be formulated in the following :

3.1 The potential energie

The form
( )

ai
D Π−Π=Π  (3.1)

describes the complete potential energie with internal potential stated matematically as
follows:
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and the potential of the external forces:

dRqudBpu R

T

R
r

T

B
a ⋅+⋅=Π ∫∫

__

σ

 .                                                     (3.3)

The constraints of the stationarity of Π  with respect to the displacements leads to the
formulation of equilibrium:
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The Strain-displacement conditions of compatibility (3.5) and the displacement boundary
conditions (3.6) will be fulfilled exactly

BU=ε    (3.5)

0=− p
a UU (3.6)

where:
pU   -   prescribed terms of displacement,

aU  -  displacements components of  U.

The constraints for stationarity is the compatibility (3.5) and after fulfilling (3.6) results
the equilibrium.

The presented displacement related finit element theorie is very common in the praxis.
However, other methods have also been applied sucessfully. This will be explained in the
following.

3.2 Stationarity of the complementary energy

One of  those methods is based on the stationarity of the complementary energy.
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The transition from the potential energy to the supplemental energy can be achieved by a
Legendre-transformation. The supplemental energy is obtained by maximizing the
energy. The area integral will be formed for a surface R  in addition to the constraint for
some boundary conditions. The stress components and the corresponding loads on the
surface are modelled by unknown parameters. Simultaneously the stress functions have to
fulfil the continuity between the elements, the differential equilibrium conditions and the

boundary conditions for stress. The condition for stationarity of *Π  with respect to the
stress parameters results in:
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and the equations for equilibrium of stress

φσ RotRot=    (3.9)
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0=− krσ (3.10)

The requirements for the stationarity is the equilibrium condition (3.9), and from (3.10)
results the compatibility condition.

It is obious that some conditions are fulfilled exactly, however this is not completely true
for the strain, stress and compatibility conditions and the geometrical boundary
conditions. They will only be fulfilled if (3.8) will give be a satisfactory solution for any
variation of stresses. The fomulation of the stationarity of the supplement enery has not

widely been applied in practice as the setting up of  the stress function φ  has proven to

be difficult for many practical applications.

3.3  Gemischte Variationsformulierungen
 

Mixed variations are expressions which result from an extension of the principle of
stationarity of the total potential energy or of the suplemental enery. They allow for a
relaxation of the conditions which have to be fulfilled by the solution variables. They also
allow for additonal solution variables which might represent deflections, strain or stress.
Starting from (3.1) until (3.6) the conditions for displacements following (3.5) and (3.6)
can be weakened by applying additional Lagrangian multipliers inΠ . The functional
formulation reads:
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where ελ  and uλ  are Lagrangesche factors, pU the prescribed boundary deflections at

the border, and R  the complete surface. ελ  and uλ  an be seen as stress and forces.

The formulation of the variations shown above may be seen as a generalisation of the
principle of virtual displacements. The boundary condition for the displacements and the
compatibility conditions for strain have been relaxed.   All unknown displacements, strain
parameters, stresses and boundary forces vary. A formulation of the type (3.11) is a
valuable and most general description of the statical and kinematic condition of the body
under consideration. Enforcing stationarity with respect to every unknown variable ends
in the following equation for the material law,

ετ C= (3.12)

the compatibility conditions (Strain-displacement relations):

BU=ε (3.13)

and the equations of equilibrium:
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for the volums VB . On the boundary of the body the prescribed displacements uR  and

force conditions  fR   will be enforced. The internal reactions with respect to uR are

identical to the Lagrangian factors.

4. Analogy between the Lagrangian formulations of geodetic adjustment and
mechanics

In 2.2 and 2.3. the general case of least squares adjustment and the principles of variations
have been formulated. In both cases the same starting situation is given, the search for an
extreme of a function applying the Lagrangian formulation. As stated in 2.1 the analogy
between the functional representations is worth considering, and especially with respect
to the variables and matrices used.  Based on that analogy it will be easier to solve the
formulations of variations in mechanics, namely based on the method of least squares.

By comparing both formulations a number of characteristics become obvious.
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Π  corresponds to sum of the squared residuals  vQvT 1− . The expression BU−ε  ,

the geometrical compatibility condition corresponds to the condition equations of the
least squares formulation wAxBv ++ . The displacement conditions p

a UU −
correspond to the additional conditions between the unknown parameters dGx + . The

Lagangian multipliers 1λ , 2λ  are 1k  , 2k  in both sets of equations. They reduce the

constraints to forces and corresponding stresses.

The displacements and therefore the strain ε  will vary, which can be interpreted as

residuals v . For the unknown deflections  aU good approximate values can be obtained

following the procedure described in (Milev and Gruendig 1999). The can be substituted
within the parameters x  of the unknowns, where any set of given displacements

pU corresponds to the parameters d  .
For the physical interpretation of deflections in a deformation analysis, the parameters d
may result from a comparison of  epochs of geodetic measurements (Gruendig et al.
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1985). They are the statistically significant parameters. The interpretation of the
mechanical model, where stress and strain reaction are to be determined can easily be
done (Milev 2001).

5. Dynamical model

Hamilton‘s prinziple for a elastic body in his dynamical formulation states:
Among the set of all admissible configurations of the system,  the actual motion makes
the quantyty

0
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Ldtδ , (5.1)

stationary, provided the configoration of the system is prescribed at the limits 1tt =  and

2tt = , where UTL −=  is a extended expresion  of the Lagrangian function given in

(3.11). T   meens the kinetic energy of the system.

6. Conclusions

In this paper a comparison between the general relations of variation in mechanics and the
general solution of the least squares problem of the type conditional adjustment, subject
to conditions between the unknown parameters, has been explained.

For the principle of variations, subject to conditions, the solution will be achieved
applying Lagrangian factors. Combing the characteristics of the least squares approach in
Geodesy with the physical meaning of the parameters in mechanics, a better
understanding and a physical interpretation of surveying results will be obtained. For the
mechanical application, stochastic properties of the parameters can be derived and used
for a verification of the results.
The extended Hamilton‘sche functional seems to most aprobriate for the general case of
deformation analysis, as it also includes time.
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